methane_super_emitters.model
1import lightning as L 2import torchmetrics 3import torch 4import torch.nn as nn 5 6 7class SuperEmitterLocator(L.LightningModule): 8 def __init__(self, fields): 9 self.fields = fields 10 super().__init__() 11 self.conv_layers = nn.Sequential( 12 nn.Conv2d(len(self.fields), 16, kernel_size=3, padding=1), 13 nn.ReLU(), 14 nn.Conv2d(16, 32, kernel_size=3, padding=1), 15 nn.ReLU(), 16 nn.Conv2d(32, 64, kernel_size=3, padding=1), 17 nn.ReLU(), 18 nn.Conv2d(64, 128, kernel_size=3, padding=1), 19 nn.ReLU(), 20 nn.AdaptiveAvgPool2d((8, 8)), 21 ) 22 self.fc_layers = nn.Sequential( 23 nn.Linear(128 * 8 * 8, 1024), 24 nn.ReLU(), 25 nn.Linear(1024, 512), 26 nn.ReLU(), 27 nn.Linear(512, 32 * 32), # Output layer 28 ) 29 30 def forward(self, x): 31 out = self.conv_layers(x) 32 out = out.view(out.size(0), -1) 33 out = self.fc_layers(out) 34 return out 35 36 def configure_optimizers(self): 37 return torch.optim.Adam(self.parameters(), lr=1e-4) 38 39 def training_step(self, batch, batch_idx): 40 x, y = batch 41 y_hat = self(x) 42 y_hat_flat = y_hat.view(y.shape[0], -1) 43 y_indices = y.view(y.shape[0], -1).argmax(dim=1) 44 loss = torch.nn.functional.cross_entropy(y_hat_flat, y_indices) 45 self.log("train_loss", loss) 46 return loss 47 48class SuperEmitterDetector(L.LightningModule): 49 def __init__(self, fields, dropout=0.4, weight_decay=0.01, lr=1e-3): 50 super().__init__() 51 self.fields = fields 52 self.dropout = dropout 53 self.weight_decay = weight_decay 54 self.lr = lr 55 56 self.conv_layers = nn.Sequential( 57 nn.Conv2d(len(fields), 32, kernel_size=3, stride=1, padding=1), 58 nn.ReLU(), 59 nn.MaxPool2d(kernel_size=2, stride=2), 60 nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), 61 nn.ReLU(), 62 nn.MaxPool2d(kernel_size=2, stride=2), 63 nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), 64 nn.ReLU(), 65 nn.MaxPool2d(kernel_size=2, stride=2), 66 ) 67 68 self.fc_layers = nn.Sequential( 69 nn.Flatten(), 70 nn.Linear(128 * 4 * 4, 128), 71 nn.ReLU(), 72 nn.Dropout(self.dropout), 73 nn.Linear(128, 1), 74 nn.Sigmoid(), 75 ) 76 77 def forward(self, x): 78 x = self.conv_layers(x) 79 x = self.fc_layers(x) 80 return x 81 82 def configure_optimizers(self): 83 return torch.optim.Adam(self.parameters(), lr=self.lr, weight_decay=self.weight_decay) 84 85 def training_step(self, batch, batch_idx): 86 images, labels = batch 87 outputs = self(images).squeeze() 88 loss = nn.functional.binary_cross_entropy(outputs, labels.float()) 89 acc = ((outputs > 0.5).int() == labels).float().mean() 90 self.log("train_loss", loss) 91 self.log("train_acc", acc) 92 return loss 93 94 def validation_step(self, batch, batch_idx): 95 images, labels = batch 96 outputs = self(images).squeeze() 97 loss = nn.functional.binary_cross_entropy(outputs, labels.float()) 98 acc = ((outputs > 0.5).int() == labels).float().mean() 99 self.log("val_loss", loss) 100 self.log("val_acc", acc) 101 return loss 102 103 def test_step(self, batch, batch_idx): 104 images, labels = batch 105 outputs = self(images).squeeze() 106 acc = ((outputs > 0.5).int() == labels).float().mean() 107 self.log("test_acc", acc)
8class SuperEmitterLocator(L.LightningModule): 9 def __init__(self, fields): 10 self.fields = fields 11 super().__init__() 12 self.conv_layers = nn.Sequential( 13 nn.Conv2d(len(self.fields), 16, kernel_size=3, padding=1), 14 nn.ReLU(), 15 nn.Conv2d(16, 32, kernel_size=3, padding=1), 16 nn.ReLU(), 17 nn.Conv2d(32, 64, kernel_size=3, padding=1), 18 nn.ReLU(), 19 nn.Conv2d(64, 128, kernel_size=3, padding=1), 20 nn.ReLU(), 21 nn.AdaptiveAvgPool2d((8, 8)), 22 ) 23 self.fc_layers = nn.Sequential( 24 nn.Linear(128 * 8 * 8, 1024), 25 nn.ReLU(), 26 nn.Linear(1024, 512), 27 nn.ReLU(), 28 nn.Linear(512, 32 * 32), # Output layer 29 ) 30 31 def forward(self, x): 32 out = self.conv_layers(x) 33 out = out.view(out.size(0), -1) 34 out = self.fc_layers(out) 35 return out 36 37 def configure_optimizers(self): 38 return torch.optim.Adam(self.parameters(), lr=1e-4) 39 40 def training_step(self, batch, batch_idx): 41 x, y = batch 42 y_hat = self(x) 43 y_hat_flat = y_hat.view(y.shape[0], -1) 44 y_indices = y.view(y.shape[0], -1).argmax(dim=1) 45 loss = torch.nn.functional.cross_entropy(y_hat_flat, y_indices) 46 self.log("train_loss", loss) 47 return loss
Hooks to be used in LightningModule.
9 def __init__(self, fields): 10 self.fields = fields 11 super().__init__() 12 self.conv_layers = nn.Sequential( 13 nn.Conv2d(len(self.fields), 16, kernel_size=3, padding=1), 14 nn.ReLU(), 15 nn.Conv2d(16, 32, kernel_size=3, padding=1), 16 nn.ReLU(), 17 nn.Conv2d(32, 64, kernel_size=3, padding=1), 18 nn.ReLU(), 19 nn.Conv2d(64, 128, kernel_size=3, padding=1), 20 nn.ReLU(), 21 nn.AdaptiveAvgPool2d((8, 8)), 22 ) 23 self.fc_layers = nn.Sequential( 24 nn.Linear(128 * 8 * 8, 1024), 25 nn.ReLU(), 26 nn.Linear(1024, 512), 27 nn.ReLU(), 28 nn.Linear(512, 32 * 32), # Output layer 29 )
Attributes: prepare_data_per_node: If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data. allow_zero_length_dataloader_with_multiple_devices: If True, dataloader with zero length within local rank is allowed. Default value is False.
31 def forward(self, x): 32 out = self.conv_layers(x) 33 out = out.view(out.size(0), -1) 34 out = self.fc_layers(out) 35 return out
Same as torch.nn.Module.forward()
.
Args: args: Whatever you decide to pass into the forward method. *kwargs: Keyword arguments are also possible.
Return: Your model's output
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.
Return: Any of these 6 options.
- **Single optimizer**.
- **List or Tuple** of optimizers.
- **Two lists** - The first list has multiple optimizers, and the second has multiple LR schedulers
(or multiple ``lr_scheduler_config``).
- **Dictionary**, with an ``"optimizer"`` key, and (optionally) a ``"lr_scheduler"``
key whose value is a single LR scheduler or ``lr_scheduler_config``.
- **None** - Fit will run without any optimizer.
The lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration.
The default configuration is shown below.
lr_scheduler_config = {
# REQUIRED: The scheduler instance
"scheduler": lr_scheduler,
# The unit of the scheduler's step size, could also be 'step'.
# 'epoch' updates the scheduler on epoch end whereas 'step'
# updates it after a optimizer update.
"interval": "epoch",
# How many epochs/steps should pass between calls to
# `scheduler.step()`. 1 corresponds to updating the learning
# rate after every epoch/step.
"frequency": 1,
# Metric to monitor for schedulers like `ReduceLROnPlateau`
"monitor": "val_loss",
# If set to `True`, will enforce that the value specified 'monitor'
# is available when the scheduler is updated, thus stopping
# training if not found. If set to `False`, it will only produce a warning
"strict": True,
# If using the `LearningRateMonitor` callback to monitor the
# learning rate progress, this keyword can be used to specify
# a custom logged name
"name": None,
}
When there are schedulers in which the .step()
method is conditioned on a value, such as the
torch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that the
lr_scheduler_config
contains the keyword "monitor"
set to the metric name that the scheduler
should be conditioned on.
.. testcode::
# The ReduceLROnPlateau scheduler requires a monitor
def configure_optimizers(self):
optimizer = Adam(...)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": ReduceLROnPlateau(optimizer, ...),
"monitor": "metric_to_track",
"frequency": "indicates how often the metric is updated",
# If "monitor" references validation metrics, then "frequency" should be set to a
# multiple of "trainer.check_val_every_n_epoch".
},
}
# In the case of two optimizers, only one using the ReduceLROnPlateau scheduler
def configure_optimizers(self):
optimizer1 = Adam(...)
optimizer2 = SGD(...)
scheduler1 = ReduceLROnPlateau(optimizer1, ...)
scheduler2 = LambdaLR(optimizer2, ...)
return (
{
"optimizer": optimizer1,
"lr_scheduler": {
"scheduler": scheduler1,
"monitor": "metric_to_track",
},
},
{"optimizer": optimizer2, "lr_scheduler": scheduler2},
)
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in your ~lightning.pytorch.core.LightningModule
.
Note: Some things to know:
- Lightning calls ``.backward()`` and ``.step()`` automatically in case of automatic optimization.
- If a learning rate scheduler is specified in ``configure_optimizers()`` with key
``"interval"`` (default "epoch") in the scheduler configuration, Lightning will call
the scheduler's ``.step()`` method automatically in case of automatic optimization.
- If you use 16-bit precision (``precision=16``), Lightning will automatically handle the optimizer.
- If you use `torch.optim.LBFGS`, Lightning handles the closure function automatically for you.
- If you use multiple optimizers, you will have to switch to 'manual optimization' mode and step them
yourself.
- If you need to control how often the optimizer steps, override the `optimizer_step()` hook.
40 def training_step(self, batch, batch_idx): 41 x, y = batch 42 y_hat = self(x) 43 y_hat_flat = y_hat.view(y.shape[0], -1) 44 y_indices = y.view(y.shape[0], -1).argmax(dim=1) 45 loss = torch.nn.functional.cross_entropy(y_hat_flat, y_indices) 46 self.log("train_loss", loss) 47 return loss
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
Args:
batch: The output of your data iterable, normally a ~torch.utils.data.DataLoader
.
batch_idx: The index of this batch.
dataloader_idx: The index of the dataloader that produced this batch.
(only if multiple dataloaders used)
Return:
- ~torch.Tensor
- The loss tensor
- dict
- A dictionary which can include any keys, but must include the key 'loss'
in the case of
automatic optimization.
- None
- In automatic optimization, this will skip to the next batch (but is not supported for
multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning
the loss is not required.
In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example::
def training_step(self, batch, batch_idx):
x, y, z = batch
out = self.encoder(x)
loss = self.loss(out, x)
return loss
To use multiple optimizers, you can switch to 'manual optimization' and control their stepping:
def __init__(self):
super().__init__()
self.automatic_optimization = False
# Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx):
opt1, opt2 = self.optimizers()
# do training_step with encoder
...
opt1.step()
# do training_step with decoder
...
opt2.step()
Note:
When accumulate_grad_batches
> 1, the loss returned here will be automatically
normalized by accumulate_grad_batches
internally.
49class SuperEmitterDetector(L.LightningModule): 50 def __init__(self, fields, dropout=0.4, weight_decay=0.01, lr=1e-3): 51 super().__init__() 52 self.fields = fields 53 self.dropout = dropout 54 self.weight_decay = weight_decay 55 self.lr = lr 56 57 self.conv_layers = nn.Sequential( 58 nn.Conv2d(len(fields), 32, kernel_size=3, stride=1, padding=1), 59 nn.ReLU(), 60 nn.MaxPool2d(kernel_size=2, stride=2), 61 nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), 62 nn.ReLU(), 63 nn.MaxPool2d(kernel_size=2, stride=2), 64 nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), 65 nn.ReLU(), 66 nn.MaxPool2d(kernel_size=2, stride=2), 67 ) 68 69 self.fc_layers = nn.Sequential( 70 nn.Flatten(), 71 nn.Linear(128 * 4 * 4, 128), 72 nn.ReLU(), 73 nn.Dropout(self.dropout), 74 nn.Linear(128, 1), 75 nn.Sigmoid(), 76 ) 77 78 def forward(self, x): 79 x = self.conv_layers(x) 80 x = self.fc_layers(x) 81 return x 82 83 def configure_optimizers(self): 84 return torch.optim.Adam(self.parameters(), lr=self.lr, weight_decay=self.weight_decay) 85 86 def training_step(self, batch, batch_idx): 87 images, labels = batch 88 outputs = self(images).squeeze() 89 loss = nn.functional.binary_cross_entropy(outputs, labels.float()) 90 acc = ((outputs > 0.5).int() == labels).float().mean() 91 self.log("train_loss", loss) 92 self.log("train_acc", acc) 93 return loss 94 95 def validation_step(self, batch, batch_idx): 96 images, labels = batch 97 outputs = self(images).squeeze() 98 loss = nn.functional.binary_cross_entropy(outputs, labels.float()) 99 acc = ((outputs > 0.5).int() == labels).float().mean() 100 self.log("val_loss", loss) 101 self.log("val_acc", acc) 102 return loss 103 104 def test_step(self, batch, batch_idx): 105 images, labels = batch 106 outputs = self(images).squeeze() 107 acc = ((outputs > 0.5).int() == labels).float().mean() 108 self.log("test_acc", acc)
Hooks to be used in LightningModule.
50 def __init__(self, fields, dropout=0.4, weight_decay=0.01, lr=1e-3): 51 super().__init__() 52 self.fields = fields 53 self.dropout = dropout 54 self.weight_decay = weight_decay 55 self.lr = lr 56 57 self.conv_layers = nn.Sequential( 58 nn.Conv2d(len(fields), 32, kernel_size=3, stride=1, padding=1), 59 nn.ReLU(), 60 nn.MaxPool2d(kernel_size=2, stride=2), 61 nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), 62 nn.ReLU(), 63 nn.MaxPool2d(kernel_size=2, stride=2), 64 nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), 65 nn.ReLU(), 66 nn.MaxPool2d(kernel_size=2, stride=2), 67 ) 68 69 self.fc_layers = nn.Sequential( 70 nn.Flatten(), 71 nn.Linear(128 * 4 * 4, 128), 72 nn.ReLU(), 73 nn.Dropout(self.dropout), 74 nn.Linear(128, 1), 75 nn.Sigmoid(), 76 )
Attributes: prepare_data_per_node: If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data. allow_zero_length_dataloader_with_multiple_devices: If True, dataloader with zero length within local rank is allowed. Default value is False.
Same as torch.nn.Module.forward()
.
Args: args: Whatever you decide to pass into the forward method. *kwargs: Keyword arguments are also possible.
Return: Your model's output
83 def configure_optimizers(self): 84 return torch.optim.Adam(self.parameters(), lr=self.lr, weight_decay=self.weight_decay)
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.
Return: Any of these 6 options.
- **Single optimizer**.
- **List or Tuple** of optimizers.
- **Two lists** - The first list has multiple optimizers, and the second has multiple LR schedulers
(or multiple ``lr_scheduler_config``).
- **Dictionary**, with an ``"optimizer"`` key, and (optionally) a ``"lr_scheduler"``
key whose value is a single LR scheduler or ``lr_scheduler_config``.
- **None** - Fit will run without any optimizer.
The lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration.
The default configuration is shown below.
lr_scheduler_config = {
# REQUIRED: The scheduler instance
"scheduler": lr_scheduler,
# The unit of the scheduler's step size, could also be 'step'.
# 'epoch' updates the scheduler on epoch end whereas 'step'
# updates it after a optimizer update.
"interval": "epoch",
# How many epochs/steps should pass between calls to
# `scheduler.step()`. 1 corresponds to updating the learning
# rate after every epoch/step.
"frequency": 1,
# Metric to monitor for schedulers like `ReduceLROnPlateau`
"monitor": "val_loss",
# If set to `True`, will enforce that the value specified 'monitor'
# is available when the scheduler is updated, thus stopping
# training if not found. If set to `False`, it will only produce a warning
"strict": True,
# If using the `LearningRateMonitor` callback to monitor the
# learning rate progress, this keyword can be used to specify
# a custom logged name
"name": None,
}
When there are schedulers in which the .step()
method is conditioned on a value, such as the
torch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that the
lr_scheduler_config
contains the keyword "monitor"
set to the metric name that the scheduler
should be conditioned on.
.. testcode::
# The ReduceLROnPlateau scheduler requires a monitor
def configure_optimizers(self):
optimizer = Adam(...)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": ReduceLROnPlateau(optimizer, ...),
"monitor": "metric_to_track",
"frequency": "indicates how often the metric is updated",
# If "monitor" references validation metrics, then "frequency" should be set to a
# multiple of "trainer.check_val_every_n_epoch".
},
}
# In the case of two optimizers, only one using the ReduceLROnPlateau scheduler
def configure_optimizers(self):
optimizer1 = Adam(...)
optimizer2 = SGD(...)
scheduler1 = ReduceLROnPlateau(optimizer1, ...)
scheduler2 = LambdaLR(optimizer2, ...)
return (
{
"optimizer": optimizer1,
"lr_scheduler": {
"scheduler": scheduler1,
"monitor": "metric_to_track",
},
},
{"optimizer": optimizer2, "lr_scheduler": scheduler2},
)
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in your ~lightning.pytorch.core.LightningModule
.
Note: Some things to know:
- Lightning calls ``.backward()`` and ``.step()`` automatically in case of automatic optimization.
- If a learning rate scheduler is specified in ``configure_optimizers()`` with key
``"interval"`` (default "epoch") in the scheduler configuration, Lightning will call
the scheduler's ``.step()`` method automatically in case of automatic optimization.
- If you use 16-bit precision (``precision=16``), Lightning will automatically handle the optimizer.
- If you use `torch.optim.LBFGS`, Lightning handles the closure function automatically for you.
- If you use multiple optimizers, you will have to switch to 'manual optimization' mode and step them
yourself.
- If you need to control how often the optimizer steps, override the `optimizer_step()` hook.
86 def training_step(self, batch, batch_idx): 87 images, labels = batch 88 outputs = self(images).squeeze() 89 loss = nn.functional.binary_cross_entropy(outputs, labels.float()) 90 acc = ((outputs > 0.5).int() == labels).float().mean() 91 self.log("train_loss", loss) 92 self.log("train_acc", acc) 93 return loss
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
Args:
batch: The output of your data iterable, normally a ~torch.utils.data.DataLoader
.
batch_idx: The index of this batch.
dataloader_idx: The index of the dataloader that produced this batch.
(only if multiple dataloaders used)
Return:
- ~torch.Tensor
- The loss tensor
- dict
- A dictionary which can include any keys, but must include the key 'loss'
in the case of
automatic optimization.
- None
- In automatic optimization, this will skip to the next batch (but is not supported for
multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning
the loss is not required.
In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example::
def training_step(self, batch, batch_idx):
x, y, z = batch
out = self.encoder(x)
loss = self.loss(out, x)
return loss
To use multiple optimizers, you can switch to 'manual optimization' and control their stepping:
def __init__(self):
super().__init__()
self.automatic_optimization = False
# Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx):
opt1, opt2 = self.optimizers()
# do training_step with encoder
...
opt1.step()
# do training_step with decoder
...
opt2.step()
Note:
When accumulate_grad_batches
> 1, the loss returned here will be automatically
normalized by accumulate_grad_batches
internally.
95 def validation_step(self, batch, batch_idx): 96 images, labels = batch 97 outputs = self(images).squeeze() 98 loss = nn.functional.binary_cross_entropy(outputs, labels.float()) 99 acc = ((outputs > 0.5).int() == labels).float().mean() 100 self.log("val_loss", loss) 101 self.log("val_acc", acc) 102 return loss
Operates on a single batch of data from the validation set. In this step you'd might generate examples or calculate anything of interest like accuracy.
Args:
batch: The output of your data iterable, normally a ~torch.utils.data.DataLoader
.
batch_idx: The index of this batch.
dataloader_idx: The index of the dataloader that produced this batch.
(only if multiple dataloaders used)
Return:
- ~torch.Tensor
- The loss tensor
- dict
- A dictionary. Can include any keys, but must include the key 'loss'
.
- None
- Skip to the next batch.
# if you have one val dataloader:
def validation_step(self, batch, batch_idx): ...
# if you have multiple val dataloaders:
def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples::
# CASE 1: A single validation dataset
def validation_step(self, batch, batch_idx):
x, y = batch
# implement your own
out = self(x)
loss = self.loss(out, y)
# log 6 example images
# or generated text... or whatever
sample_imgs = x[:6]
grid = torchvision.utils.make_grid(sample_imgs)
self.logger.experiment.add_image('example_images', grid, 0)
# calculate acc
labels_hat = torch.argmax(out, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
# log the outputs!
self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders, validation_step()
will have an additional argument. We recommend
setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.
# CASE 2: multiple validation dataloaders
def validation_step(self, batch, batch_idx, dataloader_idx=0):
# dataloader_idx tells you which dataset this is.
...
Note: If you don't need to validate you don't need to implement this method.
Note:
When the validation_step()
is called, the model has been put in eval mode
and PyTorch gradients have been disabled. At the end of validation,
the model goes back to training mode and gradients are enabled.
104 def test_step(self, batch, batch_idx): 105 images, labels = batch 106 outputs = self(images).squeeze() 107 acc = ((outputs > 0.5).int() == labels).float().mean() 108 self.log("test_acc", acc)
Operates on a single batch of data from the test set. In this step you'd normally generate examples or calculate anything of interest such as accuracy.
Args:
batch: The output of your data iterable, normally a ~torch.utils.data.DataLoader
.
batch_idx: The index of this batch.
dataloader_idx: The index of the dataloader that produced this batch.
(only if multiple dataloaders used)
Return:
- ~torch.Tensor
- The loss tensor
- dict
- A dictionary. Can include any keys, but must include the key 'loss'
.
- None
- Skip to the next batch.
# if you have one test dataloader:
def test_step(self, batch, batch_idx): ...
# if you have multiple test dataloaders:
def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples::
# CASE 1: A single test dataset
def test_step(self, batch, batch_idx):
x, y = batch
# implement your own
out = self(x)
loss = self.loss(out, y)
# log 6 example images
# or generated text... or whatever
sample_imgs = x[:6]
grid = torchvision.utils.make_grid(sample_imgs)
self.logger.experiment.add_image('example_images', grid, 0)
# calculate acc
labels_hat = torch.argmax(out, dim=1)
test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
# log the outputs!
self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders, test_step()
will have an additional argument. We recommend
setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.
# CASE 2: multiple test dataloaders
def test_step(self, batch, batch_idx, dataloader_idx=0):
# dataloader_idx tells you which dataset this is.
...
Note: If you don't need to test you don't need to implement this method.
Note:
When the test_step()
is called, the model has been put in eval mode and
PyTorch gradients have been disabled. At the end of the test epoch, the model goes back
to training mode and gradients are enabled.